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Definitions and Facts

� MTBE: Methyl tertiary butyl ether, an oxygen-containing
gasoline additive

� Used in the United States since 1979; usage increased
steadily in 1980s, then dramatically in 1990s

� MTBE is the most commonly used gasoline additive and
is the second most manufactured chemical

� MTBE usage in gasoline:
– 0 to 8% (volume/volume) for octane boosting
– 11% in select wintertime gasoline since 1988
– 15% in Federal Oxy-fuel since 1992
– 11% in Federal reformulated gasoline (RFG) since 1995
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MTBE Molecule
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Properties: Benzene vs. MTBE

LowHighNatural biodegradability
5-40~ 500Taste threshold in water (�g/L)
1.052Affinity for organic carbon (Log Koc)
0.020.22Henry’s law constant
24595Vapor pressure (mm Hg)
40065Typical maximum conc. in water (mg/L)

50,0001,780Pure compound solubility (mg/L)
0-15%1-3%Volume % in gasoline
MTBEBenzeneProperty
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MTBE Detections in Groundwater near Leaking
Underground Storage Tank (LUST) Sites

818
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4,595

# LUST Sites
with MTBE
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93%609Texas

75%6,127California

% LUST
Sites

with MTBE
# LUST Sites

TestedState

Using 1995-1998 groundwater analyses
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More MTBE Facts

� MTBE sometimes found in jet fuel and #2 heating oil
(cross-contamination during transport and storage)

� MTBE in water has low taste and odor thresholds (about
20 to 40 µg/L)

� Nationwide:
– 5% to 10% of drinking water wells in RFG/Oxy-fuel areas contain

detectable levels of MTBE
– 99% of those MTBE detections are < 20 µg/L

� State-specific examples:
– In CA, 62 of 6,409 drinking water sources (<1%) tested

contained MTBE; Santa Monica, CA wells contained up to
600 µg/L

– In La Crosse, KS, the sole-source public well field contained
600 µg/L
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Time3

MTBE plume
still growing…

Time2
BTEX plume now stable

Time1

LUST
BTEX and MTBE plumes growing

Subsurface Characteristics of MTBE

� 28 times more soluble than benzene
� 10 times less volatile from water than benzene
� Much less retarded than benzene
� Much less biodegradable than benzene
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Port Hueneme, CA –  MTBE & BTEX Plumes
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MTBE
BTEX

UST

Movement of MTBE Plumes

� MTBE plumes move faster than BTEX compounds
� MTBE plumes move farther than BTEX compounds
� MTBE plumes occasionally source-separate, or detach
� MTBE plumes sometimes extend deeper into aquifers

(i.e., “dive”), especially on leading edge
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Factors that Increase MTBE Vertical Transport

� With greater longitudinal transport, the total vertical
dispersion increases (minor)

� With greater plume length, there is more downward
slug displacement from numerous infiltration events

� Greater plume length means MTBE plume is more
likely to encounter a pumping well (which can rapidly
pull down any dissolved-phase compound)

� Greater plume length means the MTBE plume is
more likely to encounter a geologic layer that allows
downward migration (i.e., greater heterogeneity over
larger scale)
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Recent Water Standards for MTBE

25 states have standards (from 10 to 200 µg/L), 8 states are developing
standards, 4 use site-specific levels, and 13 use the current Federal HA
and/or are waiting for the Federal maximum contaminant level (MCL)
(a 5- to-10-year wait)

“Guidance criteria”
enforceable for all waters;
stringent!

10New York (1999)

Drinking water; enforceable13 – MCL (expected)
  5 – SMCLCalifornia (1999)

Health advisory (HA) for
taste and odor; nonenforceable 20-40Federal (1998)

Type of Water StandardMTBE Standard
(µg/L)Locale (Year)

For a national map with updated MTBE regulations:  www.epa.gov/swerust1/mtbe/MTBEmap.htm
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Cleanup Levels

� If no one is consuming MTBE-impacted
water, drinking-water standards may be
inappropriate.

� Site-specific, risk-based levels for MTBE
needed; reference doses and slope factors
are being developed.

� Low taste and odor thresholds, continued
movement, liability, and perceptions all
factor in.

� Navy: no Preliminary Remediation Goal
(PRG)…funding issue?
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Additional Regulatory Activity

� U.S. Environmental Protection Agency (EPA) Blue
Ribbon Panel recently issued a report that advised
“the use of MTBE should be reduced substantially”
(to phase-out with minimal disruptions and costs over
4 years)

� California banned MTBE use after December 2002
� A 1999 New England study advised a three-year

phase down and cap on MTBE
� Several states (CA, ME, and NH) and non-attainment

(air quality) areas trying to get out of the Federal RFG
and Oxy-fuel programs, mostly to help avoid MTBE…
Congressional action is needed, however!

� Other state studies currently are underway
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MTBE Litigation

� Class-action lawsuits over MTBE usage have been
filed against oil companies, gasoline distributors, and
MTBE manufacturers (even industry representative
groups) in:
– Maine
– North Carolina
– New York
– California (two)

� Site-specific lawsuits have been filed in California by
impacted water utilities (Santa Monica and South
Lake Tahoe)

� More to come?
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Traditional Remediation Technologies:
Technology Progression

Biopile
Composting
Land Farming
Bioslurry Reactors
Bioventing
Bioslurping
Air Sparging
Monitored Natural Attenuation

(Petroleum Hydrocarbons)
Monitored Natural Attenuation

(Chlorinated Hydrocarbons)
Enhanced Anaerobic Dechlorination (EAD)
Anaerobic Bioventing
Sequential Anaerobic/Aerobic Treatment
In Situ Cometabolism
Cometabolic Air Sparging (CAS)
Bioaugmentation
Bioengineering (GEMs)

Conventional

Innovative

Emerging

Early
Development

Chlorinated
Hydrocarbons

Petroleum
Hydrocarbons
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Traditional Remediation Technologies

� Many technologies that work for remediating
gasoline also will work for MTBE

� However, most technologies will be less
effective and/or more costly for MTBE

� Traditional technologies include:
– Risk-based corrective action (RBCA)
– Soil excavation
– Air sparging (AS)
– Soil vapor extraction (SVE)
– Bioventing
– Groundwater (GW) extraction (and water treatment)
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Traditional Remediation Technologies –
Good Performers

P&T is great for hydraulic
containment; still limited by
residual product & hydrogeo.

DozensPlume control
is very good

Better for soluble MTBE than
for most compounds

DozensRemediation is good
for dissolved phase

Groundwater
extraction

MTBE’s high vapor pressure
makes SVE excellent initially;
but only before MTBE
leaches into GW

DozensVery applicable if
applied soon; poor if
applied laterSVE

Process works fine, but
results may be unfavorable
for MTBE

FewFully
ApplicableRBCA

approach

Performance and
Comments

Reported
Field

Applications

Applicability
for MTBETechnology
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Traditional Remediation Technologies –
Poor Performers

Performance poor; so far
control areas show no
measurable improvement

3-4Not promising
so farBioventing

Aeration benefit reduced (hard
to “strip”) and biodegradation
benefit much reduced; field
results mixed from good to very
poor

> 12
Variable, still
being
determined

Air sparging

If implemented soon after spill,
can be effective; if implemented
later, when the MTBE is leached
from soil, is ineffective

FewVariable with
time

Soil
excavation

Performance and
Comments

Reported
Field

Applications

Applicability
for MTBETechnology
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MTBE Remediation and Treatment:
An Emerging Issue
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Aboveground Treatment of MTBE-Impacted Water

Looks promising, especially
if TBA present and of
concern; high capital costs

Lab: pilot test starting
Good; effective
on tertiary-butyl
alcohol (TBA)

Resin
sorbents

Destroys MTBE; high capital
costs; byproducts can be
problematic

Pilot: looks promising;
field studies startingGood

Advanced
oxidation
processes

High granular activated
carbon (GAC) usage (rapid
breakthrough possible);
virgin coconut GAC best

Field: some good
applications, many
poor ones

Good in select
situations

Carbon
adsorption

Higher air/water ratio needed,
air emissions problematic

Field: many good
applicationsGood-fairAir

stripping

Performance and
Comments

Development
Level

Theoretical
Effectiveness

on MTBE
Technology

See CA MTBE Research Partnership (2000) for details and costs
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Cost of MTBE Remediation

� The added cost of remediating a gasoline
spill site when MTBE is present varies widely:
– If active remediation ongoing, a little MTBE

arrives, and no system changes needed � little to
no cost increase

– If active remediation ongoing, MTBE arrives, and
system changes or expansion needed
� moderate cost increase

– If active remediation not occurring, MTBE arrives,
and a new remedial method needed (i.e., change
from passive to active) � major cost increase
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Cost of MTBE Remediation

� Cost of treating MTBE-impacted water is 40% to 80%
more than treating BTEX-impacted water
(Keller et al., 1999)

� Survey of early MTBE experience in RFG states
(Hitzig et al., 1998) concluded that:
– At 60% of LUST sites, cost increases are 0-20%
– At 32% of LUST sites, cost increases are 20-100%
– At 8% of LUST sites, cost increases are >100%

� MTBE may cause active remediation costs to increase
20-80% at most sites, and occasionally significantly
more

� “Hot spot” reduction, a quick response, and/or using
alternative cleanup goals can greatly reduce scale of
project, thus saving considerable money
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Innovative Remediation Technologies:
Phytoremediation

� Technology Description:
– Involves using plants and trees to decontaminate

subsurface; for MTBE, this involves mass removal to
control downgradient spread of dissolved-phase
MTBE

– Mature trees can passively “pump” (evapotranspire)
several hundred gallons of water per day from
subsurface

– Cores of live oak trees above a plume showed MTBE
in the tree fluids

– Being tested at Port Hueneme
– Looks promising, but…
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Innovative Remediation Technologies:
Phytoremediation

� Applicability limited because:
– Can’t use if plume ill-defined
– Trees must be mature, located at correct locales,

and sufficient in number
– If GW velocity more than 10 ft/yr, insufficient

“treatment”
– MTBE plume may be “diving” below root zone
– Still much to learn
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Innovative Remediation Technologies:
In Situ Chemical Oxidation

� Can destroy MTBE in place
� Common method is by inducing a Fenton’s

Reaction, in which hydroxyl radicals
(OH• groups) are created in the ground

� Requires injection of ozone, H2O2, or both
� Some byproducts created
� Field tests ongoing at MTBE sites
� Technology still developing
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Innovative Remediation Technologies:
Enhanced Biodegradation

� Most promising innovative process for MTBE
� Multiple methodologies and microbial

consortium being developed
� LOTS of work going on
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  Aquifer Factors

Slides adapted from those of Joe Salanitro & Equilon Enterprises

Why is MTBE Difficult to Biodegrade?

Aquifer activity

MTBE-degrading
activity

Metabolism

MTBE molecule

Cell growth

Property/Finding

• Ether and tertiary carbon bond recalcitrance
• Slow growth (0.05/d)
• Low yield (0.1 to 0.2 g-cells/g-MTBE)
• Low #’s of indigenous degraders (0.001% of total
population in biotreaters)

• MTBE>TBA>IPA>Acetone>Pyruvate>Acetate

• Most cultures are aerobic
• Affected by low dissolved oxygen (DO),
other VOCs, pH, and/or temperature

• Low #’s degraders/L-GW or g-soil (0-100)
• Plume enrichment (degraders) very slow
(field natural attenuation rate, 0.001/d)
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Well 42 (Control) Well 42 (Aerobic) Well 42 (Anoxic) Well 45 (Anoxic)

Anoxic vs. Aerobic Conditions
(Port Hueneme Groundwater)

Experimental Microcosms
No Microbial Cultures Added
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Biodegradation of BTEX and MTBE in Port Hueneme Aquifer Soil 
(700 ppm gasoline) 
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Investigator Culture Feature
1. Hardison (OSU) Graphium cometabolic (butane)

2. Hyman (NCSU) n/br-alkane-oxidizers cometabolic (n/iso-C3-C6)

3. Steffan (Envirogen) propane-oxidizers cometabolic (propane)
4. Corcho/Watkinson
(Shell International) cyclohexane-oxidizers cometabolic (cyclohexane)

5. Mahaffey (Pelorus) aromatic-oxidizers cometabolic (benzene)

6. Mo et al. (Notre Dame) Methylobacterium, slow growth on MTBE
Rhodoccoccus,
Arthrobacter

7. Hanson/Scow (UC-Davis) Sphingomonas low cell yields on MTBE
8. Fortin/Deshusses
(UC-Riverside) mixed (municipal)  low cell yields on MTBE

9. Park/Cowan (Rutgers) mixed (refinery biosolids)  low cell yields on MTBE

10. Salanitro (Equilon) mixed (chemical biosolids)  low cell yields on MTBE
Rhodococcus  MTBE degradation inducible

Comparison of MTBE-Degrading Cultures
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Enhanced Bioremediation – The Good News

� Once BTEX and other hydrocarbons are gone,
MTBE degradation increases

� Numerous MTBE-degrading cultures have been
identified; lab tests indicate that adding these
cultures clearly enhances MTBE biodegradation
rates in microcosms

� Adding DO also helps
� Adding a microbial consortia and oxygen

together increases degradation rates even more
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Enhanced Bioremediation – The Good News

� Several field tests have shown good success:
– Port Hueneme w/Equilon’s MC-100, BC-4, UC-Davis

cultures
– At three sites (WI, CA, and MI), oxygen added by oxygen

release compound (ORC) emplacement seemed to
increase MTBE biodegradation rates by indigenous
microbes and/or produced TBA from MTBE (be careful…)

– An engineered system at Vandenberg Air Force Base
(AFB) is successfully degrading MTBE with an injection of
non-native microbes and oxygen

– In CT, a vigorous closed-loop circulation of enzymes, pure
oxygen, and nutrients reduced BTEX and MTBE levels by
97% in 34 days; site bioremediated in 18 months
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Enhanced Bioremediation – The Bad News

� Natural MTBE biodegradation rates are about
1/20th that of benzene

� MTBE does not degrade well in the presence
of more readily consumed compounds like
BTEX

� To enhance natural MTBE degradation, we
may have to promote BTEX biodegradation,
or wait for sequential degradation
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Enhanced Bioremediation – The Bad News

� Lab and field results are still quite mixed: MTBE
not seen to be biodegrading everywhere, all the
time

� Even the favorable results cannot all be
explained

� For large, dilute plumes, the MTBE
concentrations may be too low to support rapid
bioactivity

� Enhancing MTBE biodegradation may help a lot,
but it is still expected to be a slow process at
most sites
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Conclusions

� Increasing regulatory and litigation activity
indicates that MTBE contamination likely to
become a bigger concern

� Be attentive when defining MTBE plumes (they
can move fast and far; they can dive)

� Most traditional technologies are applicable to
MTBE, though often less effective than for
BTEX compounds

� Many MTBE plumes will be more difficult or
more costly to remediate than BTEX plumes
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Conclusions (Cont.)

� MTBE may cause active remediation costs to
increase 20-80% at many sites, and even
significantly more at some sites

� Field experience has shown that subsurface
MTBE can be remediated and treated

� Several innovative technologies look promising,
especially enhanced bioremediation
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Case Study: Biobarrier Field Test, Port Hueneme, CA

� Conducted at the NCBC Port Hueneme, CA
� MTBE Plume >4,000 ft long
� Treatment plot situated in MTBE-only portion of

the plume
� MTBE concentrations in this area range from

2 to 9 mg/L
� DO concentrations are <1 mg/L in this area
� Depth to water is approximately 10 ft, and MTBE

plume is 10 ft thick
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Case Study: Biobarrier Field Test, Port Hueneme, CA

>4000 ft

Port Hueneme, CA
Source
Zone

Field Site
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MC

Slides adapted from those of Joe Salanitro & Equilon Enterprises

Case Study: Biobarrier Field Test, Port Hueneme, CA

� This enhanced
biodegradation
technology involves
three main steps:

1)  Oxygenate (by pure
oxygen injection)

2)  Inoculate with
MTBE-degraders
(MC-100)

3)  Monitor
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Silt/sand
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Case Study: Biobarrier Field Test, Port Hueneme, CA
Biobarrier – Subsurface Features
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Case Study: Biobarrier Field Test, Port Hueneme, CA
Biobarrier – Field Test Layout
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Case Study: Biobarrier Field Test, Port Hueneme, CA



RITS MTBE 49

Case Study: Biobarrier Field Test, Port Hueneme, CA
Control Plot (Shallow)
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Case Study: Biobarrier Field Test, Port Hueneme, CA
Control Plot (Shallow)
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Case Study: Biobarrier Field Test, Port Hueneme, CA
O2-Injection Only Plot (Shallow)

0

5

10

15

20

25

0 10 20 30 40

-68 d
0 d
186 d

261 d

Distance (ft)

Groundwater FlowGroundwater Flow

D
is

so
lv

ed
 O

xy
ge

n 
(m

g/
L)



RITS MTBE 52

Case Study: Biobarrier Field Test, Port Hueneme, CA
O2-Injection Only Plot (Shallow)
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Case Study: Biobarrier Field Test, Port Hueneme, CA
MC-100 and O2-Injection Plot (Shallow)
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Case Study: Biobarrier Field Test, Port Hueneme, CA
MC-100 and O2-Injection Plot (Shallow)
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Case Study: Biobarrier Field Test, Port Hueneme, CA
Results

� Intermittent pure oxygen sparging started 6 weeks
before microbial seeding; raised DO levels from
about 1 mg/L up to 10-20 mg/L

� 32 days after seeding with MC-100 (aka BC-4),
MTBE levels immediately downgradient dropped 90%
(no change yet in the control or oxygen-only plots)

� By day 261 MTBE in the treated plot was ND in many
sample locales, with 10-50 µg/L in a few locales

� By day 261, the O2-only plot did show MTBE
decreases; apparently enhanced natural process
after some lag time
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Case Study: Biobarrier Field Test, Port Hueneme, CA
Summary and Conclusions

� Some biostimulation due to oxygen injection alone,
but it is less effective than with MC-100, and there
is lag time

� At this time, augmentation appears to be necessary
for in situ MTBE biotreatment

� In situ MC-100 biobarrier appears to be capable of
degrading MTBE to <5 µg/L, w/out TBA residuals
(and activity remains to at least 261 days)

� The combination of bioaugmentation with oxygen
addition appears to be a feasible in situ MTBE
biotreatment option
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Case Study: La Crosse, KS
Site History

� La Crosse, KS is a small rural farming
community of approximately 1,500 people

� Public water supply is from several
production wells, in a sole-source aquifer;
wells are screened 50 to 70 ft below grade

� In May 1996, a resident noticed a strange
odor in an irrigation well
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Case Study: La Crosse, KS
Site History

� Sampling of adjacent public well detected MTBE
at 200 µg/L; concentration later reached a
maximum of 600 µg/L

� MTBE was from a gasoline spill at a co-op
service station in the early 1990’s; volume
unknown

� Later detailed assessment (using 60 monitoring
wells) showed that MTBE had migrated beneath
the 800-foot-long, two-dimensional (2-D) shallow
monitoring system, entered the valley-fill aquifer,
and impacted the well field 4,000 feet away!
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Case Study: La Crosse, KS
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Case Study: La Crosse, KS
Remediation System

� Two impacted public wells were pumped at total
flow rate of 300 gpm (winter) to 450 gpm
(summer) to contain and extract contaminated
groundwater

� Source-area remediation techniques
implemented:
– Limited soil excavation
– AS/SVE system installed; limited effectiveness due to

low permeability layer just above the water table
– ORC barrier injected at mid-plume; effectiveness

unknown
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Case Study: La Crosse, KS
Temporary Treatment System

� An undersized shallow-tray air stripper was
readily available.  As an emergency system,
water extraction reduced to 250 gpm, and
available stripper installed.  Removal
efficiency averaged 40%.

� Public concern very low; no taste and odor
complaints before, or after
(water is quite hard).

� Treated water served to public with 80 to 300
µg/L of MTBE (no BTEX).



RITS MTBE 62

Case Study: La Crosse, KS
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Case Study: La Crosse, KS
Permanent Treatment System

� In September 1997, two air strippers installed at water
treatment plant

� Each was 35 feet tall, 6 feet in diameter, with 30 feet of
2-inch Jaeger tripacks

� Strippers operated in series, each with air:water of
175:1

� No off-gas treatment required
� Each tower achieves about 90% removal (80% in

winter)
� With influents of 200-600 µg/L, treated water ranges

from ND – 24 µg/L
� Treated water served to public for more than 2 years

now
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Case Study: La Crosse, KS
Summary and Conclusions

� Spill history unknown, but aquifer impacted by MTBE-
blended gasoline sometime in last 10 years

� Typical 2-D plume definition missed the deep MTBE
plume

� Source area remediation fair at best
� Impacted supply wells used to contain plume at low cost
� Two air strippers in series used to treat water, with a

total of 96 to 99% MTBE removal
� Simple and logical application of traditional technologies

restored water usage; water currently is being served to
public

� MTBE remediation and treatment can be done!
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Ground Water Conference, NGWA, Dublin, Ohio, pg. 178-188.
(available from TSR or purchase from NGWA @ 1-800-551-7379, ext. 502)

� CA MTBE Research Partnership, 2000.  Treatment Technologies for the
Removal of Methyl Tertiary Butyl Ether (MTBE) from Drinking Water,
National Water Research Institute, Fountain Valley, CA, 408 pgs.
(report available 1-714-378-3278)
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Points of Contact

� The TSR in your area
� Ernie Lory (NFESC)

– DSN 551-1299 (805-982-1299)
– e-mail: loryee@nfesc.navy.mail

� Carmen Lebron (NFESC)
– DSN 551-1616 (805-982-1616)
– e-mail: clebron@nfesc.navy.mail

� James M. Davidson (Alpine Environmental Inc.)
– Phone: 970-224-4608
– e-mail: jdavidsonalpine@cs.com


